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Experimental measurements of the frequencies of discrete tones induced by flow over 
rectangular cavities were carried out over a range of low subsonic Mach numbers to 
provide a reliable data base for (aircraft wheel well) cavity noise consideration. A 
mathematical model of the cavity tones and pressure oscillation phenomenon based 
on the coupling between shear layer instabilities and acoustic feedback is developed 
to help in understanding the tone generation mechanism. Good agreement is found 
between discrete tone frequencies predicted by the model and experimental measure- 
ments over a wide range of Mach numbers. Evidence of tones generated by the cavity 
normal mode resonance mechanism a t  very low subsonic Mach numbers is also 
presented. 

1. Introduction 
This paper studies the acoustic oscillations induced by flow over rectangular cavities. 

The primary motivation is to obtain a clear understanding of the generation mecha- 
nism of wheel well noise of an aircraft. Recent flight measurements conducted by 
Healy (1974), Gibson (1974) and others indicated that wheel well noise is an important 
source of airframe noise during landing approach. The noise generated by the inter- 
action of flow over the wheel well consists of discrete and broad band components. 
The present study focuses on the discrete components alone. These components are 
associated with strong acoustic oscillations inside the wheel well cavity. The total 
phenomenon is very complicated. As a first step towards understanding the generation 
mechanisms of the discrete noise component, the wheel well has been modelled as a 
rectangular cavity and the unperturbed flow outside the cavity regarded as effectively 
uniform. This study will include acoustic oscillations induced by both subsonic and 
supersonic flows ; however, for practical purposes, primary interest will be concen- 
trated on shallow cavities with length to depth ratio (LID) in the vicinity of unity 
and greater and external flow in the low subsonic Mach number range. 

The phenomenon of flow-induced noise radiation and acoustic oscillations in a 
rectangular cavity has been studied by numerous investigators in the past, e.g. 
Krishnamurty (1955), Roshko (1955), Dunham (1962), Plumblee, Gibson & Lassiter 
(1962), Rossiter (1964), Spee (1966), East (1966), Covert (1970), Heller, Holmes & 
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Covert (1971), Bilanin & Covert (1973), Heller & Bliss (1975), Block (1976) and others. 
However, unlike the present work, most of these researchers confined their interest 
to flows with moderate subsonic to high supersonic Mach numbers. The experimental 
work of East is, perhaps, the only exception. Unfortunately, he limited himself to 
deep cavities with length to depth ratio less than unity and hence his finding is some- 
what less relevant to wheel well noise. 

Plumblee et al. (1962) earlier proposed that the observed discrete tones were the 
result of cavity resonance. They suggested that the frequencies of the tones were 
identical to those which corresponded to the maximum acoustic response of the cavity. 
According to their theory the entire turbulent shear layer which spans the open end 
of the cavity provides a broad band noise source which drives the cavity oscillations. 
The response of the rectangular cavity to this broad band excitation is instrumental 
in selecting certain narrow band frequencies for amplification. However, as pointed 
out by Rossiter (1964) and Heller et al. (19711, this line of reasoning meets obvious 
difficulties when the boundary-layer flow adjacent to the outside wall is laminar. 
Experiments revealed that laminar flow produces louder tones even though the broad 
band excitation as required by the Plumblee et al. model is absent. Despite this 
problem, East (1966) obtained evidence that the depth mode (lowest normal mode) 
of not too shallow cavities is often excited at very low subsonic Mach numbers. This 
finding is confirmed experimentally by the present work. A somewhat modified normal 
mode resonance model similar to the idea of Plumblee et al. will be presented later to 
explain the observed phenomenon. 

At slightly higher subsonic Mach numbers ( M  > 0.15) to high supersonic Mach 
numbers, discrete tones exhibit characteristics which cannot be explained by the 
normal mode resonance concept. For these flow Mach numbers, a sequence of tones 
is usually observed. These tones are not harmonics of each other although harmonics 
can be found. If the observed Strouhal numbers (based on the flow velocity and length 
of the cavity) of these tones are plotted against the flow Mach numbers, the data 
points lie on well-defined bands as shown in figure 1. Rossiter (1964) seemed to be one 
of the early investigators who suggested that the observed phenomenon was a result 
of acoustic feedback. His shadowgraphic observations (Mach numbers ranged from 
0.4 to 1.2) indicated that concentrated vortices were shed periodically in the vicinity 
of the upstream lip of the cavity. These vortices travelled downstream along the shear 
layer which spanned the open end of the cavity. On the basis of this and other obser- 
vations, Rossiter proposed the following model which he believed was responsible for 
generating the cavity tones. Vortices, shed periodically from the upstream lip of the 
cavity, are convected downstream in the shear layer until they reach the downstream 
end of the cavity. Upon interacting with the downstream wall of the cavity acoustic 
pulses are generated. These acoustic disturbances propagate upstream inside the cavity. 
When reaching the upstream end of the cavity, the acoustic pulses cause the shear 
layer to separate upstream of the edge resulting in the shedding of new vortices. In 
this way the vortices and acoustic disturbances form a feedback loop. Using the fact 
that the timing of the various links of the feedback loop must be synchronized, 
Rossiter derived the following semi-empirical formula for the tone frequencies : 
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FIGURE 1. Frequency of periodic pressure fluctuations in rectangular cavities 
(Rossiter 1964). LID: X ,  = 4; A, = 6; 0, = 8; +, = 10. 

where f = frequency of tones, L = length of cavity, U ,  = free-stream velocity, 
rn = integer, M = Mach number, K = ratio of convection velocity of vortices to free- 
stream velocity, y = a factor to account for the lag time between the passage of a 
vortex and the emission of a sound pulse at  the downstream corner of the cavity. 
The model, however, does not provide numerical values for K and y. They are treated 
as empirical constants to be determined by a best fit to measured data. Rossiter found 
that by taking y = 0.25 and 1 / ~  = 1.75, the above equation agreed with his measured 
data very well as shown in figure 1. 

The success of Rossiter’s semi-empirical formula in predicting his own data does 
not necessarily mean that his model is correct. Actually his equation is not always so 
successful when compared with data obtained by others and especially when the flow 
Mach number is outside the range covered in figure 1. Figure 2 shows a comparison 
of this equation using the same value of y and 1 / ~  adopted by Rossiter with data 
obtained in the present study for Mach numbers less than 0.4. These data will be ex- 
tensively described in a later section of this paper. In  the Rossiter model, a good deal 
of significance is attached to the highly localized vortices. However, schlieren pic- 
tures taken by Krishnamurty (1955) did not indicate the presence of these vortices 
during cavity oscillations. Heller & Bliss ( 1975) employed water table visualization 
techniques to study the phenomenon when the external flow is supersonic. No vortex 
shedding was found even though the fluid in the cavity and the free shear layer 
spanning the cavity underwent violent oscillations. This finding is also supported by 
the schlieren observations of Heller et al. (1971) for high subsonic and supersonic flows. 
The accumulated evidence seems to be at  variance with the Rossiter model and indi- 
cates that vortex shedding is probably not important over the entire Mach number 
range as far as cavity oscillations are concerned. In  addition, the Rossiter model does 
not describe how acoustic disturbances are generated at the downstream wall of the 
cavity and how the feedback acoustic waves excite the shear layer at the upstream 
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FIGURE 2. Comparison of Rossiter’s semi-empirical formula and present data. 
-, Rossiter’s formula (1964). Data: x , 0; L / D  = 2.36 (see alsofigure 16). 

lip. Although, for the purpose of predicting the frequencies of discrete tones, the 
details of these physical processes may not be extremely crucial, knowledge of these 
processes is of vital importance to noise suppression efforts. 

Bilanin & Covert (1973), at the suggestion of one of the present authors, improved 
on Rossiter’s feedback model by relating the driving mechanism of cavity oscillations 
to the instabilities of the free shear layer. It is well known that free shear layers of 
the kind that exist at the mouth of the cavity are prone to Kelvin-Helmholtz inst- 
abilities. Although it might not have been explicitly stated, the importance of flow in- 
stabilities was recognized quite some timeago, e.g. Krishnamurty (1955). The Bilanin 
& Covert model assumed that the shear layer is being agitated periodically at the 
upstream lip of the cavity. This excites the flow instability waves of the shear layer 
which grow as they propagate downstream. The fluctuating motion of the shear layer 
at the downstream wall of the cavity induces a periodic inflow of external fluid into 
the cavity and half a period later a discharge of cavity fluid into the external flow. 
Bilanin & Covert attributed this action of mass inflow and outflow as the source of 
acoustic radiation. As in the Rossiter model the acoustic disturbances are assumed 
to propagate upstream inside the cavity without disturbing the shear layer. On 
reaching the upstream wall the acoustic wave is envisaged to give rise to a localized 
pressure force which excites the shear layer. Thereby the feedback loop is closed. In  
developing this model mathematically Bilanin & Covert idealized the shear layer 
as a thin vortex sheet. For the noise source a t  the downstream corner of the cavity, 
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FIGURE 3. Comparison of Rossiter’s data, and the theory of Bilanin & Covert. -, 
Bilanin & Covert (1973); x , a, 0, +, Rossiter’s data (see legend of figure 1). 

they used a line source which pulsated periodically. To complete the model, a line 
pressure force was adopted at  the upstream lip of the cavity to simulate the excitation 
of the shear layer by the acoustic waves. Upon invoking the condition that the phase 
of the feedback loop must increase by an integral multiple of 271 when traversing it 
once around, Bilanin & Covert computed the discrete tone frequencies of cavity oscil- 
lations. It is to be noted that their predictions are free of any empirical constant. 
In their paper Bilanin & Covert showed that their predictions agreed reasonably well 
with measurements for high supersonic Mach number flows. However, for low super- 
sonic and high subsonic Mach numbers, their theoretical results do not seem to 
compare as favourably with experimental data. Figure 3 shows a comparison between 
Rossiter’s data and the prediction of Bilanin & Covert. It can be seen that the dis- 
crepancy between theory and experiment is considerable within the range of Mach 
numbers shown. 

The model of Bilanin & Covert is an improvement over Rossiter’s. Yet, like Rossiter, 
they never treated the question of how the acoustic disturbances interacted and 
excited the flow instabilities. In  addition, they overlooked one fundamental problem 
in their vortex sheet model. For an infinitesimally thin vortex sheet, it has been shown 
by Miles (1958) that the flow becomes stable at  a sufficiently high Mach number. 
If the total temperatures of the fluids above and below the vortex sheet are equal, 
the flow is stable for M > 21.6. When the vortex sheet is stable there is no driving 
mechanism for cavity oscillations in the Bilanin & Covert model, which contradicts 
experimental observations. Bilanin & Covert ignored this change in the instability 
characteristics of a thin shear layer and applied their model to flows with Mach 
number as high as 3.4. Block (1976) extended the Bilanin & Covert model to include 
the effect of the length to depth ratio. Although agreement with experimental data 
was somewhat improved, the model suffers the same inadequacies as the Bilanin & 
Covert model. 
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The purpose of this work is to study the phenomenon of acoustic oscillations in- 
duced by flow over rectangular cavities both experimentally and theoretically. The 
experimental part of this paper concentrates on reporting the observed tone frequency 
characteristics for flow Mach number less than 0-4. Good and reliable data have not 
been readily available in the literature over this range of low subsonic Mach numbers. 
Of particular interest is the observation of a transition from the normal mode reson- 
ance mechanism to the feedback instability mechanism for discrete tone generation 
as flow Mach number increases. Details of these will be described in $$a and 5 below. 
Further discussion of the normal mode resonance mechanism in relation to the mea- 
surements will be given. In Ss.2 and 3, a mathematical model of acoustic feedback 
oscillations is developed. This model incorporates the feature of shear layer inst- 
abilities of the Bilanin & Covert model. However, unlike the Bilanin & Covert model, 
the thickness of the shear layer is taken into account. This effect turns out to be 
important. In addition, the excitation of shear layer instabilities by acoustic distur- 
bances is analysed rigorously. The simplifying assumption of point force excitation 
used by Bilanin & Covert is removed. Further, the reflexion of acoustic waves by the 
bottom wall of the rectangular cavities is also taken into consideration. Thus the 
present model has two additional parameters, namely the ratio of the momentum 
thickness of the shear layer to the length of the cavity OIL and the cavity length to 
depth ratio LID, which are ignored by most previous models. In  $5 the predicted 
tone frequencies based on this model are compared with measurements over the 
whole subsonic to low supersonic Mach number range. Quite favourable agreement is 
found lending support to the contention that the present model indeed accounts for 
most of the essential features of the acoustic oscillation phenomenon. 

2. A mathematical model 
The flow field associated with pressure oscillations in a rectangular cavity is highly 

unsteady and complex. It is not possible a t  the present time to solve this flow surface 
interaction problem from first principles. The objective here is to develop a suffi- 
ciently simple mathematical model of the acoustic feedback mechanism. A model of 
this kind is valuable in that it provides an understanding of the basic controlling 
processes. 

In  developing the feedback model below it will be assumed that the rectangular 
cavity is two-dimensional and that the mean flow inside the cavity (see figure 4) can 
be ignored. Strictly speaking this is not correct as pointed out by Maul1 & East (1963). 
In  a follow-up work on the unsteady component of cavity oscillations, East (1966), 
however, found that there was no correlation between the mean flow and the acoustic 
behaviour of the cavity. His experimental results showed that the tones of the acoustic 
feedback oscillations were totally unaffected by the three-dimensional mean flow. 
Based on this conclusion a two-dimensional model is deemed adequate at this time. 

Before entering into a detailed discussion of the proposed mathematical model, it 
is instructive to ask what are the important dimensionless parameters of the problem. 
As far as is known most previous work on feedback oscillations considered the depen- 
dence of the Strouhal numbers of the discrete tones on flow Mach numbers only. 
Figure 5 shows a collection of data on the Strouhal numbers from various sources 
plotted as a function of Mach number. It is seen that there is a large scattering of the 
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FIGURE 5. Experimental results from several investigations of cavity oscillation frequencies. 
A, Heller & Bliss (1975); h, Krishnamurty (1955); 0, Plumblee et al. (1962); 0, Rokter  
(1904); A ,  Block (1976). 

data. This indicates that the flow-induced acoustic oscillation phenomenon is affected 
not only by the Mach number but by other parameters as well. A parameter of possi- 
ble importance is the length to depth ratio of the cavity LID, which arises because 
of reflexion of sound waves by the bottom wall of the cavity as has been discussed 
by Block (1976). In  the proposed model described below it will beestablished that the 
ratio of cavity length to the thickness of the shear layer is also an important parameter 
in so far as determining the tone Strouhal number is concerned. Unfortunately in 



380 C. K .  W. Tam and P. J .  W .  Block 

most of the experiments cited in figure 5 the thicknesses of the shear layers were not 
measured. Lack of this information makes it difficult to correlate these data in a 
satisfactory manner. 

The phenomenon occurring at  the cavity trailing edge is also an important con- 
sideration. Krishnamurty (1 955), in his pioneering work on cavity oscillations, recog- 
nized that the interaction between the oscillating shear layer and the trailing edge 
of the cavity produced intense acoustic disturbances. This idea was adopted by 
Rossiter (1964) and later by Bilanin & Covert (1973) as an important link in their 
feedback models. Although experimental evidence leaves no room for doubt con- 
cerning the existence of this acoustic source, there is very little agreement as to how 
the pressure waves are generated. Rossiter did not attempt to describe the process in 
his vortexltrailing-edge interaction model. Bilanin & Covert assumed the unsteady 
mass addition and removal at the trailing edge of the cavity as the cause of the acoustic 
disturbance which essentially suggests a dipole source at  the trailing edge. For the 
purpose of computing the phase of the pressure disturbances which excite the shear 
layer they only consider the acoustic waves inside the cavity. However, one should 
consider the disturbances generated outside the cavity as well in the case of subsonic 
flow. To see this it is only necessary to observe that a mass inflow into the cavity is 
at  the same time a mass outflow from the point of view of the external flow and vice 
versa. Thus a compression wave produced inside the cavity due to an inflow of outside 
fluid a t  the trailing edge of the cavity is accompanied by the generation of a rarefaction 
wave outside the cavity. According to the Bilanin & Covert model the acoustic waves 
outside and inside the cavity are therefore exactly opposite in phase as in the case of 
dipole radiation. Unfortunately, this is at odds with the schlieren observations of 
Krishnamurty (1955) at subsonic flows. In  addition, using the water table visualization 
technique, Heller & Bliss were able to simulate the sequence of events which took 
place during a typical oscillation cycle. They found that the compression wave 
(shock wave) produced at the trailing edge of the cavity extended from inside the 
cavity all the way to the supersonic outside flow. Before they are modified by the 
outside mean flow, observations clearly indicate that the pressure disturbances inside 
and outside the cavity are in phase, contrary to the model of Bilanin & Covert. More 
recently, Heller & Bliss (1975) attempted to model the process of acoustic wave 
generation by assuming the back wall of the cavity as behaving like a pseudo-piston. 
But the effort failed to predict any discrete oscillation frequency. 

In  this paper, the following acoustic wave generation process is proposed. As evi- 
denced by flow visualization, the shear layer oscillates up and down near the trailing 
edge of the cavity. During the upward motion of the cycle the fluid of the shear layer 
shields the trailing edge of the cavity from the external flow as shown in figure 6 (a). 
Under this circumstance the external fluid flows smoothly over the trailing edge and 
no pressure waves of any significance are generated. When the shear layer is deflecting 
downward there is an inflow of external fluid into the cavity as shown in figure 6 ( b ) .  
A high-pressure region (a stagnation point could arise if there is significant inflow) 
forms momentarily near the trailing edge of the cavity. The transient nature of the 
flow causes the emission of a compression wave. The compression wave propagates in 
all directions. The shape of the wave front will, of course, be modified by the convec- 
tion effect of the mean flow as it radiates away from the trailing edge of the cavity. 
This model differs significantly from the unsteady mass addition and removal model 
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FIGURE 7. Acoustic wave pattern outside the cavity. 

of Bilanin & Covert. Unlike the Bilanin & Covert model, the present model is consist- 
ent with the visual observations of Krishnamurty (1955) and Heller & Bliss (1975). 

For the purpose of computing the phases of the acoustic waves generated at  the 
trailing edge of the cavity, the effective size of the noise source can be regarded as 
very small. Krishnamurty (1955) and later Spee (1966) obtained schlieren pictures 
of the acoustic wave field outside the cavity. By assuming that the waves were pro- 
duced by a periodic line source at the trailing edge of the cavity and accounting only 
for the convection effect of the mean flow and the propagation velocity of sound (i.e. 
a periodic line source in an uniform flow of infinite extent), they were able to construct 
theoretically (see figure 7)  the wave fronts of the emitted pressure waves. These 
pictures look remarkably close to those obtained experimentally, indicating that a 
periodic line source approximation is reasonable. As a result of these observations, 
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FIGURE 8. Acoustic wave field inside and outside rectangular cavity. 

the wave pattern produced by a periodic line source located at the trailing edge of 
the cavity will be used in the present model to simulate the real wave field. Inside 
the cavity the same approximation will be used. Here, of course, the mean velocity 
is zero. Let p d +  and l )d -  represent the pressure field generated outside and inside the 
cavity respectively by the aforementioned trailing-edge interaction process. Then, 
with respect to the co-ordinate system as shown in figure 8 (see Gottlieb 1960), one 
finds that 

(subscript d denotes radiated pressure field), where Hi1) is the zeroth-order Hankel 
function of the fist kind, w is the angular frequency of oscillation, a+ and a- are the 
speeds of sound outside and inside the cavity respectively, M = UJa+ is the Mach 
number, Urn is the speedofexternalflowand& is the source strength. In ( l ) ,  the expres- 
sion for P d +  satisfies the convective wave equation and P d -  is a solution of the simple 
wave equation. P d +  is equal to zero for supersonic flows. The value Q in the expressions 
is related to the displacement of the shear layer 5 at the trailing edge of the cavity. 
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Since the trailing edge of the cavity is most exposed to the external flow when the 
shear layer is deflected to its maximum position inside the cavity, it is expected that 
the pressure near the line source is highest under these circumstances. Now for x --f L, 
the pressure field as given by (1) becomes 

X - f L - € ,  

€ <  1. 

I f  <(x, t )  is equal to p(x) exp ( -id), then the above reasoning (i.e. p attains a positive 
maximum value when c(L, t )  is most negative) provides the following phase relation- 
ship between {(L) and Q: 

P(L) = ~ Q K ,  

where K is an as yet unknown positive real constant. It turns out it is possible to 
determine the cavity tone frequencies without knowing the exact value of K .  For this 
reason no attempt will be made to estimate its value. 

Since the compression waves generated a t  the trailing edge of the cavity radiate in 
all directions, the part which is radiated into the external flow will propagate to 
infinity without suffering any reflexion as shown in figure 8. The part of the waves 
which is radiated into the cavity, e.g. w a n  front E'E", will be reflectedby thebottom 
wall and the upstream end wall of the cavity. These reflexions give rise to wave fronts 
B'B" and A'"' as indicated in figure 8. Further reflexions of the waves by the walls 
of the cavity and the shear layer are inevitable. However, a careful study of the visuali- 
zation results of Heller & Bliss (1975) reveal that reflexions from the shear layer and 
subsequent reflexions from the cavity walls are negligibly weak compared with those 
mentioned above when feedback oscillations occur. For simplicity, therefore, secon- 
dary reflexions will be ignored in the present model. The directly radiated wave EE' 
and the reflected waves A'A" and B'B" all tend to excite the instability waves of the 
shear layer. It turns out that the excitation due to reflected waves A'A" is most 
important. To calculate their effect on the shear layer, the wave field BB' can be 
simulated by using a periodic line image source B located a t  x = L, y = - 2 0  as shown 
in figure 8. Similarly, the reflected wave field A'A" can be simulated by means of an 
image line source A at x = - L, y = 0. The pressure and velocity field due to these 
image line sources are 

(3) 

I 

(subscript r denotes the reflected acoustic field). In ( 5 ) ,  v, is the velocity component 
in the direction of y and p -  is the density of fluid inside the cavity. 
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FIGURE 9. Reflexion by bottom wall of crtvity. 

To complete the mathematical model it is necessary to determine the effect of the 
interaction of the acoustic wave field (both the directly radiated field and the re- 
flected field) on the instabilities of the shear layer. It is known from previous work 
(Tam 1971) that the instability waves involved are of the convective type. That .is to 
say, the unstable waves have negligible upstream influence [see also (16) below]. 
This is important for it aIIows one to treat the shear Iayer as infinite in extent without 
incurring substantial error. Also, it is known experimentally that the bottom wall 
of the cavity (except for very shallow ones) does not interfere with the motion of the 
free shear layer. To estimate the effect of the cavity bottom wall on the acoustically 
excited instability characteristics of the shear layer one can make use of the solution 
obtained by Tam (1971). Tam's solution shows that the disturbance generated by 
periodically excited shear layer instability is confined mainly to a sector making an 
angle q5 to the downstream direction as shown in figure 9. The principal effect of the 
bottom wall is to reflect this disturbance upward towards the shear layer. For the 
present purpose, it seems reasonable to assume that the incident and the reflected 
angles of the incident and reflected waves be the same relative to the normal to the 
bottom wall. From figure 9 it  is clear that the reflected waves will not be able to reach 
the shear layer directly to excite it unless the length of the cavity L is greater than 
2 0  cot 4. The angle q5 is not too sensitive to the flow Mach number. It varies from 45" 
at M = 0.2 to 41" a t  M = 2.0. Therefore, on ignoring secondary reflexions one finds 
that the bottom wall of the cavity has little effect on the excited shear layer instability 
for cavities with aspect ratio LID < 2 .  For cavities with L somewhat greater than 2 0  
the directly reflected waves (bottom wall) will reach the shear layer and excite it. 
When this happens, however, the amplitude of the excited instability wave must be 
small compared with the original excited instability wave, which has grown by a 
factor exp ( - 2kiD) on propagating over the distance FG (see figure 9), where - kiis 
the growth rate of the instability wave. Thus taking these factors into account and 
for reasons of simplicity, the presence of the bottom cavity wall is ignored as far as 
computing the instability characteristics of the shear layer is concerned. Figure 10 
shows the model to be used for the purpose of computing the excitation of shear layer 
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instability waves by an acoustic field. Here, of course, the pressure and velocity load- 
ing on the shear layer is restricted to the interval x = 0 to x = L. From (1)) (4) and 
( 5 ) ,  these loadings are 

(6) 
A p  = p(x, y = 0-, t) -p(x, y = 0+, t )  = A@@) exp ( - iwt),  

Av = v(x, y = 0-, t )  E A8(x) exp ( - iwt), 

where AP(z) = - Q [ H il) [; - (L-x) ] -Hi1) [ 4 L - x )  ]exp[iwJf(L-~)]\  
2n a+( 1 - H2) a+( 1 - M2) 

((L - z ) ~  + 4D2)4 , I )  
HI1) [ ((L - x ) ~  + 4D2)* 

Q i2D AO(X) = ___ 
277~-a- [ (L - x)2 + 4D2]* a- 

} (7) 

for O < X < L .  

In (7), H f )  is the first-order Hankel function of the first kind. A thin vortex model of 
the shear layer will first be used to develop an analytical expression for the excited 
amplitude and phase of the unstable waves. A correction for finite shear layer thick- 
ness effect will be made in the next section of this paper. 

The shear layer of an oscillating cavity is generally turbulent. Thus the present 
problem involves the modelling of the excitation of unstable waves of a turbulent 
shear layer by sound. Recently, a good deal of work has been carried out on this 
particular subject using hydrodynamic stability theory. Chan ( 1 9 7 4 ~ )  b,  1976, 1977) 
and Moore (1977), in a series of theoretical and experimental studies involving the 
turbulent shear layer of jets, found that hydrodynamic stability calculations on wave 
speeds as well as local growth rates agreed quite well with measurements. This is true 
not only for plane wave excitation but also for higher-order wave modes. In  this paper 
we follow the works of Chan and Moore and formulate the excitation problem within 
the framework of hydrodynamic stability theory. 

To solve the mathematical problem as posed it is convenient first to construct the 
appropriate Green’s function. For a thin shear layer subjected to pressure and velocity 
loading at a point x = 5 the governing equation and boundary conditions are 

Y 2 0, 

i a - a 2  

(at ax) 

P,@UrnZ - ”+) =-- aP+ ay 2 

-+urn- p+-v=p, = 0 ,  

I v2p- = 0, 
i azp- 

a? a t 2  

As y -+ & co disturbances are bounded. At y = 0,  

2 = v- + A ~ ( Z  - 6 )  exp ( - iwt) ,  (13) 

(14) 

at 
p+ = p -  + B ~ ( z  - 5) exp ( - iwt) 
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( A ,  B are constants; S(x)  is the Dirac delta function), where p ,  v, p and 7 denote the 
pressure, velocity component in the y direction, fluid density and the displacement 
of the shear layer respectively. The subscript + or - indicates whether the physical 
quantity under consideration is associated with the moving or stationary medium as 
in figure 10. 

A simplified version of the above problem, namely with A = 0, was solved by Tam 
(1971), by means of the Fourier-Laplace transform technique. To evaluate the inverse 
transforms in the appropriate complex plane, a procedure developed by Briggs (1964) 
was employed. The solution of the present mathematical problem can be constructed 
in the same way. It is straightforward to find that q(x,t), the displacement of the 
shear layer, is given by 

P+ = [ k 2 - - ( Q - U m k ) 2 ]  1 + , Re@+) < 0, 
a% 
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The complex integrals of (15) are to be evaluated by first allowing u to be very large 
and positive so that the inverse contour is above all poles in the complex R plane as 
shown in figure 11. It is shown (see Tam 1971) that there are two poles, namely k + ( R )  
and k- (R) ,  in the k plane. They are the zeros of A(k ,  R). On deforming the inverse 
contour in the R plane towards the real axis, the k+(R) pole crosses the real axis in 
the complex k plane as depicted in figure 11. It is this pole which gives rise to an 
amplifying (unstable) wave solution in the positive x direction. On picking up the 
contribution from the pole at  Q = w in the R plane and the pole k = k+(w) in the k 
plane, one readily finds that the displacement of the shear layer associated with the 
unstable wave solution is 

I 0 ; (x-5) < 0, 

It is to be noted that (16) is not the full result of (15). It is, however, the part of 7 
associated with the unstable wave as excited by the inhomogeneous terms of (13) 
and (14). The contributions from the remaining part of the contour in the k plane 
which gives rise to 7 associated with the transmitted or reflected wave of the vortex 
sheet (see Gottlieb 1960) and the contribution from the k- pole and others are of no 
immediate interest to the present problem and are, therefore, disregarded. By means 
of (16) the displacement of the shear layer, y, due to A p  and Av of (6) and (7) can 
easily be found : 

In  (17), H ( z )  is the unit step function. The displacement of the shear layer at  the 
trailing edge of the cavity is determined by putting x = L in (17). Upon invoking the 
phase relationship between &L) and Q as given by (3) the following expression is 
obtained : 

where 
K = WqR3, M ,  LID), (18) 

I) w 
( (L  - lJ2 + 4D2)* exp ( - ik+ 6 )  dc. 
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In  this way the feedback loop is closed. The left-hand side of (18) is real; hence the 
phase of II. must be equal to an integral multiple of 2n, i.e. 

phase of 9 = 2nn; n = 1,2,3, ... . (20)  

Equation (20) is not satisfied in general unless the Strouhal number fL/gm (where 
2nf = w )  of the cavity acoustic oscillation takes on certain special values. For a 
given flow Mach number M and cavity length to depth ratio LID these are the dis- 
crete oscillation frequencies. Equations (19) and (20) can be computed numerically. 
The predicted oscillation frequencies will be used to compare with experimental 
measurements in a later section of this paper. 

3. The effect of finite shear layer thickness 
The mathematical model of $2 assumed the shear layer which spans the mouth of 

the cavity to have negligible thickness. This approximation turns out to be not very 
accurate. For instance, in Rossiter’s experiment (1964), the boundary-layer thickness 
6 was approximately 0.65 in. at  subsonic speeds. The length L of the cavities used was 
8 in., giving a ratio 6/L = 0.081 which is not completely negligible (under this condi- 
tion Glwavelength of the unstable wave is also not negligible especially for the higher- 
order tones such as n = 3,4). Actually it is believed that the scatter of the data in 
figure 5 is due primarily to variations in the initial shear layer thickness of the differ- 
ent experiments. Linear instability analysis of two-dimensional mixing layers, e.g. 
Michalke (1965), shows that the phase speeds or the dispersion relation k = k+(w) of 
instability waves of a given frequency depends very much on the shear layer thickness. 
In  order to predict the cavity tone frequencies accurately a good estimate of the 
dispersion reIation or phase speed is vital as can be seen in (19). Here it is proposed to 
correct for the thickness effect of the present model by substituting the relationship 
k+(w, 0 )  as obtained for a shear layer of finite momentum thickness 0 in (19) and (20) 
instead of the value obtained from the dispersion relation of a thin vortex sheet. This 
modification to (20) leads to the following eigenvalue formula for predicting the dis- 
crete tone frequencies : 

phase of $(wL/Um, M ,  LIB, LID) = 2nn; n = 1,2,3, ... . (21) 

Because of entrainment, the thickness of the shear layer increases in the downstream 
direction. The spatial rate of growth of the shear layer thickness on the other hand 
depends on the amplitude of cavity oscillation. These processes are interrelated and 
not fully understood at the present time. For the purpose of making a reasonably 
accurate estimate of the cavity tone frequencies it is feasible, therefore, only to take 
the thickness effect into account in an averaged sense. It will be assumed that the 
shear layer can be characterized by a mean momentum thickness 0 throughout its 
entire length. The mean velocity profile of the cavity shear layer has never been 
measured in any such detailed way as to be useful. In the absence of this information, 
the mean flow profile is taken to be the same as that of a two-dimensional free 
turbulent mixing layer near the trailing edge of a thin flat plate. The latter is readily 
available in the work of Liepman & Laufer (19741, Wygnanski & Piedler (19701, Pate1 
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FIGURE 12. Instability characteristics of shear layer. 
, M = 0.8; X - X ,  M = 0.4; ___ , M = 0.0. 

(1973), Champagne, Pao & Wygnanski (1976) and others. The following simple 
analytical expression seems to fit the experimental measurements very well : 

D(y) = 5 2 (1 + tanh (6)). 
In (22), 8 is the momentum thickness of the shear layer. This profile will be used in 
determining k+(o, M ,  8, U-). 
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7 

Let p ( z ,  y, t )  = $(y) exp [i (k+z - wt)]  be the pressure disturbance associated with the 
shear layer instability wave. Then, following standard linear hydrodynamic stability 
theory, e.g. Lin (1955), Michalke (1965), the equation for @(y)  is 

In deriving ( 2 3 ) ,  the inviscid parallel flow assumptions were used. To specify the mean 
density i5, the mean speed of sound ii, the total temperature and mean pressure of the 
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flow will be regarded as constant across the shear layer. This gives 
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where am,pm are the sound speed and mean density of the external flow outside the 
shear layer, M is the external flow Mach number and y is the ratio of specific heats. 
Equation (23) together with the boundedness condition at y -+ c co forms an eigen- 
value problem by which k+(w, M ,  8, urn) can be determined. This problem can easily 
be solved numerically. Figures 12 and 13 show typical values of real and imaginary 
parts of k, (k, = k,, + ik,) as functions of 2wO/i7, for various Mach numbers over the 
whole unstable frequency range. These numerical results were obtained using the 
computing facility of the N.A.S.A. Langley Research Center. To facilitate the com- 
putation of (19) and (21), the numerical values of 28k+ for a given Mach number are 
fed into a cubic spline curve fit computer program subroutine. In  this way the 
numerical values of k, for any unstable frequency are readily available. 

4. Experimental arrangement and procedure 
The cavity used to generate data for comparison purposes was designed to have a 

continuously variable streamwise length (0-24 cm) and a depth which varied in two 
steps, 3.19 and 5.11 cm. The latter was accomplished by sliding blocks as shown in 
figure 14. Four cavity configurations that were tested are listed below: 

Length, L (cm) Depth, D (cm) L I D  
4.0 6.11 0-783 
12.0 6-11 2 348 
2.6 3.193 0.783 
7.5 3.193 2.348 

The cavity was 5.08 cm wide. 
The apparatus was constructed of tempered, 1.25 cm thick aluminium barstock. 

The above cavity was set in a 1.25 cm thick tempered aluminium plate which was 
curved downstream of the cavity to reduce any trailing-edge noise. The plate was 
flush with the lower lip of a 30 by 45 cm nozzle. The nozzle exit velocity varied from 
a Mach number of 0.05 to 0.40. The maximum shear layer thickness 6 a t  the cavity 
leading edge was approximately 0.76 cm at Mach number 0-4. The experiment was 
performed in the A.N.R.L. open jet anechoic flow facility at the N.A.S.A. Langley 
Research Center, Hampton, Virginia. 

The acoustic data were obtained with a 4 in. condenser-type microphone which was 
located 2-13 m above the cavity as noted in figure 15. The data acquisition system 
consisted of a pre-amplifier, power supply, filter, amplifier, and spectrum analyser. 
The spectrum analyser was capable of identifying the frequency of the tones in the 
radiated noise spectrum of the cavity to within 1OHz. This allowed sufficiently 
accurate determination of the frequency which was used to calculate the Strouhal 
number (fL/&). 
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FIQURE 16. Cavity in A.N.R.L. open jet anechoic flow facility. 

The following procedure was used to obtain the Strouhal number as a function of 
Mach number. The cavity dimensions were fixed yielding a particular value of LID. 
The two values of LID used in this experiment (as shown in the above table) were 
0.783 for a fairly deep cavity and 2.35 for a shallow cavity. After the LID value was 
set, the Mach number was varied in small increments from M = 0-05 to 0.40. The 
frequencies of the radiated tones were recorded. The cavity dimensions were then 
adjusted to give the same value of LID with a differing cavity dimension and the 
process wa8 repeated. About 300 data points were generated. 

5. Comparison between theory and experiment 
The measured discrete tone frequencies as a function of Mach number are shown in 

figures 16 and 18. As can readily be swn in figure 16 for shallow cavities, the tone 
frequencies fall into bands in the Strouhal number fLl0, versus Mach number M 
plot for Mach numbers greater than 0.2 in the case of the smaller cavity and 0.12 in 
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FIQURE 16. Discrete tone frequencies as a function of Mach number. x , L = 12 cm, D = 5.08 cm, 
LID = 2.36; 0, L = 7.5 em, D = 3-175 cm, LID = 2-36. Theoretical, equations (21) and (19): 
L_ , ~ 1 2 0  = 90; --, ~ 1 2 0  = 70.  

the case of the larger cavity. For deep cavities only one discrete tone frequency 
(excluding harmonics) was found over most of the Mach number range of the experi- 
ments (see figure 18). For these cavities, the dependence of tone Strouhal number on 
Mach number at Mach numbers less than 0.2 is distinctly different from that for 
higher Mach numbers, suggesting that the tones are probably generated by an 
entirely different mechanism. This question will be discussed further in the later 
part of this section. 

In  $§2 and 3, a model of the cavity feedback oscillation mechanism was proposed. 
Here comparison between the theoretically predicted cavity tone frequencies of this 
model, namely (19) and ( 2 1 ) ,  and experimental measurements will be made. In  the 
theoretical model, the Strouhal numbers of the discrete tones depend on the parameter 
L/28, where L is the length of the cavity and 8 is the averaged momentum thickness 
of the shear layer. Since 8 is not measured in most experiments, an approximate but 
reasonable value of this parameter will be used. In  Rossiter’s (1964) experiment the 
initial turbulent boundary-layer thickness 6 upstream of the cavity was 0.65 in. at 
subsonic speeds and 0.55 in. at M = 1.2. The cavities used in the experiments had 
a length L of 8 in. On assuming that’ the turbulent boundary-layer flow had a b 
power velocity distribution as in the case of a smooth flat plate [seeSchlichting (1960), 
chapter 111, then the momentum thickness 8 and the boundary-layer thickness 8 are 
related by 8 = Ad. By means of this formula and on taking into account the fact 
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that the averaged momentum thickness B of the shear layer must be somewhat larger 
than that of the initial turbulent boundary layer, it seems reasonable, therefore, to 
assume L / 2 8  to be 50 in Rossiter's experiments. The solid curves of figure 19 show 
the predicted Strouhal numbers of cavity tones as functions of Mach number for 
LID = 4, L / 2 8  = 50 over the Mach number range of 0.4 Q M Q 1.2. These curves 
are to be compared with Rossiter's experimental data also shown in this figure. On 
considering that the theoretical curves are without any adjustable constant while 
the measurements have some degree of uncertainty it is deemed that the agreement is 
favourable. Figure 16 gives a comparison of the predicted and experimentally mea- 
sured tone Strouhal numbers versus flow Mach numbers over the low subsonic Mach 
number range of 0-1-0.4 for shallow cavities. In  the theoretical model, L/2B was 
taken to be 90 and LID = 2.36. The predicted values (solid curves) seem to agree 
quite well with the observed Strouhal numbers for the larger cavity. The value of 
L / 2 8  was estimated by fitting (22 )  to the measured mean velocity profile. This is 
shown in figure 17. The mean flow data were taken at a point 0.9 cm downstream of 
the leading edge of the cavity. In  this figure y = 0 is at the same level as the top of 
the cavity. From these measurements it is observed that for a given cavity the para- 
meter L/2B is quite constant over the Mach number range of 0.15-0.4. Thus the 
dependence of this parameter on Mach number will be ignored in the present calcu- 
lations. For the small cavity, L / 2 8  is smaller and the value L/28 is estimated to be 70. 
The calculated tone Strouhal number versus Mach number curves for L/2B = 70 are 
plotted (dotted curves) in figure 16. The agreement between theoretical and measured 
tone frequencies, as can be seen, is quite good. It is important to point out that, even 
though LID is the same for both cavities, the tone Strouhal number at a given flow 
Mach number is consistently somewhat smaller for the smaller cavity than for the 
larger one. The implication is that LIB is also an important parameter of the tone 
frequencies since this parameter was the only one which differed in the two cavity 
experiments. In fact the variation of this parameter and LID in the different experi- 
ments of figure 5 could explain the large scattering of data shown there. In  addition, 
it is to be noted that the present mathematical model does predict the correct change 
in tone Strouhal number due to a change in LIB. This can easily be seen in figure 16. 
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Data L (cm) D (cm) LID 
0 4 5-08 0.787 
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3 

Theoretical predictions : - , equations (25); x - x ,  equations (21) and (19), L/28 = 70; 
-- , equations (24); -- -, equations (21) and (19), L/28 = 50. 
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Finally, the overall good agreement between the theoretically predicted and measured 
tone frequencies as demonstrated above must be regarded as lending concrete support 
to the contention that the present model does contain the essential physics of the 
feedback oscillation phenomenon. 

Figure 18 shows the dependence of the Strouhal number of the discrete tones of 
deep cavities on flow Mach numbers at very low subsonic flow. For Mach numbers 
greater than 0.24, the Strouhal number-Mach number relationship is similar to that 
of shallow cavities, indicating that the tones are generated by the same feedback 
mechanism. A.s a matter of fact, the measured data agree very well with the predicted 
tone frequencies of the present model with L/28 = 50. The predicted Strouhal num- 
bers are shown as a dot-dash curve in figure 18. For Mach numbers less than 0.15, 
the measured relationship between Strouhal number and Mach number clearly indi- 
cates that the tones are most probably generated by a different mechanism. The 
works of Plumblee et al. (1962) and East (1966) earlier suggested an alternative mech- 
anism involving normal mode resonance. Here, however, we do not consider the source 
of energy which drives the resonance to be the broadband turbulence in the shear 
layer which spans the mouth of the cavity as Plumblee et al. originally proposed. 
Instead we believe that the energy is actually provided by shear layer instabilities. 
To test this idea one can compare the measured frequencies and the normal mode 
frequencies of the cavities. In a recent paper, Tam (1976) has computed several of the 
lower normal mode frequencies of two-dimensional rectangular cavities under the no 
flow condition. Since the flow Mach numbers under consideration are less than 0.15, 
the no flow model should be a reasonable approximation as far as resonance frequencies 
are concerned. Figure 20 shows the calculated frequency (o is complex because of 
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FIGURE 20. The red part of wLla 09. DIL of the (1, 1) mode or the depth 
mode of a two-dimensional rectangular cavity (Tam 1976). 

radiation damping; only the real part of w is shown in this figure) of the depth mode 
(lowest normal mode) as a function of the length to depth ratio of the cavity, i.e. LID. 
For L I D  = 0.787, the depth mode frequency is wLla = 0.8. Upon rewriting this in 
terms of the Strouhal number and Mach number one finds that 

As shown in figure 18, (24) correlates the measured data very well, giving strong 
support to the normal mode resonance concept. For very low Mach numbers ( M  < 0.2), 
the measured tone frequencies of the smaller shallow cavity (L  = 7.5 em, D = 31.75 
cm, L I D  = 2.36) exhibit characteristics similar to those of deep cavities. To demon- 
strate this, let us compare the measured frequencies with the lowest-order normal 
mode frequency of such a cavity. From figure 20 the depth mode frequency for 
L I D  = 2-36 is wL/a = 1.517, which gives 
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Figure 18 shows a comparison between (25) and the measured data. Although quan- 
titative agreement between the calculated and measured values is not as good as in 
the case of deep cavities, the shapes of the theoretical and measured curves exhibit 
ti striking resemblance. It is believed that the quantitative difference is due primarily 
to the fact that the no flow model is less applicable in this case. With this qualification, 
one must conclude that the evidence is strongly in favour of normal mode resonance 
being the generation mechanism of these tones at  very low subsonic Mach number. 

6. Concluding remarks 
In  this paper, experimental measurements of cavity tone frequencies at  low sub- 

sonic Mach numbers ( M  < 0.4) are presented. A mathematical model of the cavity 
pressure oscillation and acoustic feedback is also developed. This model accounts for 
the finite shear layer thickness effects and acoustic reflexions from the bottom and 
upstream end walls of the cavity which have not been considered by existing models. 
These features are shown to be important by comparison of predicted and measured 
tone frequencies. Overall good agreement is found between predicted discrete tone 
frequencies of the proposed model and the data of Rossiter (0.4 < M < 1.2) and 
also our own data for flow Mach number greater than 0.2. For very low subsonic Mach 
number, M c 0.2, evidence is found which suggests that the tones are generated 
by the normal mode resonance mechanism. The transition between the feedback 
mechanism and normal mode resonance mechanism-generated tones seems to be 
rather gradual (as evidenced by examining the measured data carefully). This indi- 
cates that a unified model of the phenomenon of flow-induced cavity tones is possible. 
Actually the present proposed model could serve as a basis for such a unified theory. 
In the development of the present model, the reflexions of acoustic waves at the open 
end of the cavity were neglected. This necessarily, therefore, rules out the possibility 
of cavity normal mode resonance. From a practical standpoint of aircraft wheel well 
cavity noise, tones generated by the normal mode resonance mechanism are of little 
significance. In  order for a commercial aircraft to stay above the ground it must 
maintain a minimum speed of generally greater than or equal to M = 0.2. Thus the 
switch-over from feedback mechanism to the normal mode resonance mechanism 
would occur only after the aircraft has landed. Because of this, this phenomenon will 
not be pursued in this work. However, it is anticipated that an extension of the present 
model to include the reflexions at the open end of the cavity and secondary reflexions 
from cavity walls and possible standing acoustic waves inside the cavity due to these 
reflexions would give a complete prediction of cavity tone frequencies for the full 
range of subsonic and supersonic flow Mach numbers. 

Most of this work was done while one of the authors (CKWT) was visiting the 
N.A.S.A. Langley Research Center on a leave of absence from the Florida State 
University. The completion of this work was supported by N.A.S.A. Grant NSG 1329. 
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